PSYCHOLOGY LEARNING PRINCIPLES COMPREHENSIVE STUDY GUIDE

1. PRINCIPLES OF LEARNING

Habituation

- **Definition:** Decrease in behavioral response to repeated, harmless stimulus
- Non-associative learning: No reward/punishment involved
- Response decrease: Faster w/ frequent, rapid repetitions
- Stimulus intensity: Weaker stimulus = faster habituation

 Dishabituation: Sudden response recovery
- after new/strong stimulus presented (e.g., notice fridge hum after door slam)
- Short-term: Fades quickly (min to hrs)
- Long-term: Lasts days/wks; involves synaptic changes in sensory neurons (less neurotransmitter released)

Sensitization

- **Definition:** Increased response to stimulus following intense/noxious event **Non-associative:** Also no
- reward/punishment
- Effect: Even mild stimuli trigger strong responses afterward
- Function: Adaptive, protective role

 Dual Process Theory: Behavior = balance
 of habituation (inhibitory) & sensitization (excitatory) processes in nervous system

Priming & Perceptual Learning

- Priming: Exposure to stimulus influences later responses unconsciously (e.g.,
- "yellow" recognize "banana" faster)

 Perceptual Learning: Improved ability to distinguish stimuli through experience (e.g., wine tasters learn subtle flavor differences)

Spatial Learning

- Cognitive maps: Mental representations of environments (Tolman's rat maze experiments)
- Hippocampus: Key for encoding spatial relationships

Constraint-Induced Movement Therapy (CIMT)

- Method: Restrain functional limb to force
- impaired limb use

 Basis: Experience-dependent plasticity; brain reorganizes through repeated practice Generalization
- Stimuli & Outcomes: Responding similarly to stimuli resembling conditioned one
- **Example:** Fear of white rat → fear of white fur/Santa beards (Little Albert)
- Generalization gradient: Response strength decreases as stimulus differs from original
- Discrete-component network: Each stimulus component represented separately (no generalization)

• Real systems: Fall between continuous generalization & discrete categorization

- <u>Discrimination Learning</u>
 Definition: Learning to respond differently to similar stimuli when only one associated w/ reinforcement
- **Example:** Dog salivates to 1000 Hz tone but not 1200 Hz
- Errorless Discrimination: Gradually introduce non-reinforced stimulus to minimize errors; prevents frustration & extinction bursts
- Negative Patterning: Responses to individual stimuli reinforced, but combined pattern not (or vice versa); demonstrates non-linear associations (é.g., light + tone → no food)

Concept Formation

- Concepts: Mental groupings of similar objects/events
- Categories: Sets of stimuli w/ shared characteristics
- Prototype: Best/"average" example of category (robin vs penguin as "bird")
 Stereotypes: Social application of
- categorical thinking; overgeneralized expectations
- Discrimination Training: Teach category boundaries (e.g., "cat" vs "dog" images) via feedback-based learning

2. CLASSICAL CONDITIONING

Elements & Basic Processes

- Unconditioned Stimulus (US): Naturally elicits response (food)
- Unconditioned Response (UR): Natural reaction (salivation)
- Conditioned Stimulus (CS): Initially neutral (bell)

 Conditioned Response (CR): Learned
- reaction to CS (salivation to bell)
- Appetitive Conditioning: Learning about pleasant outcomes (food, affection)
- Aversive Conditioning: Learning about unpleasant outcomes (shock, fear) Extinction & Recovery
- Extinction: Gradual weakening & disappearance of CR when CS repeatedly
- presented w/o US

 Mechanism: Involves inhibition, not unlearning; can show spontaneous recovery later

Compound Conditioning

- Overshadowing: Two stimuli presented together compete for associative strength; more salient cue "overshadows" other
- Blocking: Prior learning of one CS-US association prevents learning new CS when both presented together; shows learning depends on prediction error

Error-Correction Learning

- Rescorla-Wagner Model: Learning = change in association strength ∝ predictive error
- Formula: $\Delta V = \alpha \beta (\lambda \Sigma V)$
- Principle: If outcome fully predicted, no
- new learning occurs

 Probabilistic Categorization: Learning to predict when cues unreliable; models realworld uncertainty (e.g., weather prediction)

Brain Areas

- Cerebellum: Essential for timing & coordination of conditioned responses
- Purkinje Cells: Inhibitory neurons in cerebellar cortex; suppress motor responses; reduced activity during conditioned blink
- Interpositus Nucleus: Stores CS-US associations in eyeblink conditioning Inferior Olive: Provides "error signal" from unexpected US to update learning

Clinical Applications

- Tolerance: Repeated drug use in same
- environment → body anticipates effects → conditioned physiological counter-response Extinguishing Drug Addiction: Exposure therapy presents drug-related cues w/o drug, weakening conditioned craving
- Baby Albert: Demonstrated conditioned baby Albert. Definitional deficiency fear: loud noise (US) → crying (UR); paired w/ white rat (CS) → fear of rat (CR) & other furry objects (generalization)

3. OPERANT CONDITIONING

Foundational Principles

- Thorndike's Cats: Law of Effect behaviors followed by satisfaction strengthened; discomfort weakened; cats escaped puzzle boxes faster over trials
- Skinner Box: Automated environment to measure lever-press/key-peck behavior under controlled reinforcement
 S-R-O Framework: Discriminative Stimulus
- (signal) → Response → Outcome; example: "Open" sign (S) → enter store (R) → food (O)

Shaping & Chaining

- Shaping: Reinforcing successive approximations toward target behavior
- Chaining: Linking discrete behaviors into sequence where each step cues next

Reinforcement & Punishment

- Reinforcer: Increases behavior likelihood
- Punisher: Decreases behavior likelihood
- Positive: Add stimulus
- Negative: Remove stimulus Primary Reinforcers: Innate (food, water,

- Negative Contrast: Preference drops when high-value reinforcer replaced by lower value one
- Secondary Reinforcers: Neutral stimuli paired w/ primary reinforcers (money, praise)

Behavior Modification Systems

- **Token Economy:** Uses tokens exchangeable for rewards; effective in classrooms & therapy
- DRA: Differential Reinforcement of Alternative Behavior; reinforce acceptable alternative to problematic behavior while withholding reinforcement for undesired one

Operant Paradigms

- Free-operant: Continuous responding (Skinner box)
- Discrete-trial: Each response clearly separated (maze run)

Reinforcement Schedules

- Fixed Ratio (FR): Reinforcement after fixed # of responses
- Variable Ratio (VR): After varying #; produces high, steady rate (slot machines)

 Fixed Interval (FI): After fixed time;
- produces scalloped pattern
- Variable Interval (VI): After variable time; steady moderate rate

Behavioral Economics

- **Definition:** Examines how response rates change as "costs" (effort, delay) & "values" (reward size) vary
- Elastic demand: Behavior drops when cost
- Inelastic demand: Behavior persists despite cost (e.g., addiction)
- Delay Discounting: Tendency to devalue delayed rewards; steep discounting = impulsivity

Brain Areas

- Dorsal Striatum: Links stimuli w/ responses; important for habit formation
- Orbitofrontal Cortex: Represents value of expected outcomes: updates when contingencies change

Addiction Applications

- Addiction Mechanism: Drugs reinforce behavior via dopamine release; cues become powerful discriminative stimuli
- Combined Processes: Both classical (cue reactivity) & operant (drug seeking) interact Pathological Addiction: Dependence on
- substance altering neurochemistry **Behavioral Addiction:** Compulsive
- engagement in rewarding behavior (gambling, gaming) despite harm
- Common Features: Both show tolerance. withdrawal, & cue-triggered craving